QATLAMALI KO‘PXILLIKLAR TOPOLOGIK AKSLANTIRISHLARI GRUPPASINING XOSSALARI HAQIDA

Authors

  • Anvarjon Soliyevich Sharipov Mirzo Ulug‘bek nomidagi O‘zbekiston milliy universiteti “Geometriya va topologiya” kafedrasi professori Namangan muhandislik-texnologiya instituti “Oliy matematika” kafedrasi assistenti
  • Mirzabek Isomiddin o‘g‘li Mamasoliyev Mirzo Ulug‘bek nomidagi O‘zbekiston milliy universiteti “Geometriya va topologiya” kafedrasi professori Namangan muhandislik-texnologiya instituti “Oliy matematika” kafedrasi assistenti

Keywords:

silliq ko‘pxillik, qatlama, qatlamali ko‘pxillik, topologik akslantirish, topologik gruppa, Xausdorf fazo, kompakt ochiq topologiya, F-kompakt ochiq topologiya.

Abstract

Differensial geometriya va topologiyaning zamonaviy yo‘nalishlaridan biri bo‘lgan qatlamali ko‘pxilliklar nazariyasi XX asrning ikkinchi yarmida differensial tenglamalar, differensial geometriya va differensial topologiya fanlarining tutash sohasida paydo bo‘lgan. Ushbu ishda qatlamali ko‘pxilliklar topologik akslantirishlari gruppasining xossalari  o‘rganilgan. Xususan, bu gruppaning kompakt ochiq topologiyaga nisbatan toplogik gruppa ekanligi isbotlangan. Bundan tashqari qatlamali ko‘pxilliklar topologik akslantirishlari to ‘plamini sanoqli bazaga ega Xausdorf fazosi ekanligi isbotlangan.

References

C. Ehresmann, Structures feuilletees // Proc. Fifth Canad. Math. Congress. – 1961. – P.109-172.

G. Reeb, Sur certains proprietes topoloiques des varietes feuilletees// Actualite Sci. Indust. 1183 – Paris: Hermann, – 1952.

Molino P. Riemannian foliations // Progress in Mathematics Vol. 73, – Birkhäuser Boston Inc. – 1988. – P.399.

A. Haefliger, Varietes feuilletees // Ann. Scuola Norm. Sup. Pisa. – 1962. – V.16. – P.367-397.

R. Langevin, A list of questions about foliation. Differential topology, foliations group actions // Contemporary Math. – 1994. – V.161. – P.59-80.

Narmanov A.Ya., Sharipov A.S. On the group of foliation isometries// Methods of functional Analysis and topology, Kiev, Ukraine, – 2009. – V.15. – P.195-200.

G.M.Abdishukurova and A.Ya. Narmanov Diffeomorphisms of foliated manifolds // Methods of functional Analysis and topology, Kiev, Ukraine, – 2021. – V.27(2021), no 1, pp.1-9.

Narmanov A.Ya., Sharipov A.S. Geometry of Foliated Manifolds// Extracta mathematicae vol. 31. Num. 2, 2016, pp. 189-197.

A. Narmanov and S. Saitova, On the geometry of orbits of killing vector fields, Differential Equations 50 (2014), 1582–1589.

Downloads

Published

2023-09-30

How to Cite

Sharipov , A. S., & Mamasoliyev, M. I. o‘g‘li. (2023). QATLAMALI KO‘PXILLIKLAR TOPOLOGIK AKSLANTIRISHLARI GRUPPASINING XOSSALARI HAQIDA. RESEARCH AND EDUCATION, 2(9), 204–211. Retrieved from https://researchedu.org/index.php/re/article/view/4896