IKKINCHI TARTIBLI GRONUOLL CHEGARALANISHLI BOSHQARUVLAR UCHUN TUTISH MASALASI

Authors

  • Rashid Raximjanovich Polvanov Namangan davlat universiteti ”Algebra va matematika o‘qitish metodikasi” kafedrasi dotsenti, Namangan davlat universiteti ”Algebra va matematika o‘qitish metodikasi” kafedrasi o‘qituvchisi.
  • Shayxislom Tolibjon o‘g‘li G‘ayniddinov Namangan davlat universiteti ”Algebra va matematika o‘qitish metodikasi” kafedrasi dotsenti, Namangan davlat universiteti ”Algebra va matematika o‘qitish metodikasi” kafedrasi o‘qituvchisi.

Keywords:

Differensial o‘yin, geometrik chegaralanish, parallel quvish strategiyasi, quvlovchi, qochuvchi, tezlanish, Granoull chegaralanishli.

Abstract

Ushbu maqolada boshqaruvlar Granoull chegaralanishga ega holda ikkinchi tartibli differensial o‘yinlar uchun tutish masalasi o‘rganiladi. Bunda quvlovchi  uchun parallel quvish strategiyasi quriladi va uning yordamida  tutish masalasi  uchun yetarli shartlar  keltiriladi.

References

Isaacs R. Differential games. John Wiley and Sons, New York, 1965 .

Nahin P.J. Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press, Princeton, 2012 .

Azamov A.A., Samatov B.T. The П-Strategy: Analogies and Applications. The Fourth International Conference Game Theory and Management, St. Petersburg, Russia: 2010, p. 33-47.

Samatov B.T. The Pursuit- Evasion Problem under Integral-Geometric constraints on Pursuer controls. Automation and Remote Control, Pleiades Publishing, Ltd. New York: 2013, 74(7), p. 1072-1081.

Downloads

Published

2023-12-30

How to Cite

Polvanov , R. R., & G‘ayniddinov , S. T. o‘g‘li. (2023). IKKINCHI TARTIBLI GRONUOLL CHEGARALANISHLI BOSHQARUVLAR UCHUN TUTISH MASALASI. RESEARCH AND EDUCATION, 2(12), 62–67. Retrieved from https://researchedu.org/index.php/re/article/view/5858