PHYSICAL AND CHEMICAL PROPERTIES OF THE PROCESS OF SAPONIFICATION OF COTTON SOAPSTOCK UNDER ULTRASONIC INFLUENCE

Authors

  • Sanjarbek Khusinbay ugli Shamuratov Ph.D. student, Urgench State University
  • Umid Satimbaevich Baltaev Associate professor, Tashkent Institute of Chemical Technology
  • Dilafruz Saidakbarovna Sagdullaeva Leading scientist, Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan
  • Bekhzod Farkhodovich Kuramboev Assistant, Urgench State University

Keywords:

soapstock, ultrasonic method, density, viscosity, foaming properties

Abstract

The article shows the possibility of assessing the transportability of soapstock, saponified by various methods - classical and ultrasonic. It was found that after ultrasonic treatment, the density and viscosity of the soapstock significantly decreased compared to the classical method of processing branch waste from edible oil industry. At the same time, the foaming capacity of the soapstock increased with an increase in the saponification temperature after the initial and 5 minute soak. In a 5 minute settling, the foaming ability of the soapstock turned out to be lower than its initial settling.

          The foam ratio of the soapstock, saponified by the ultrasonic method, is relatively from 1.5 to 2.5 times less than by the classical method of soapstock saponification. Indicators of rheological properties of saponified soapstock proved the acceptability of pumping soapstock from one apparatus to another. Whereas, the foaming properties and the foam ratio indicate premature foam control in the production of soap, as well as the properties of the resulting detergent based on the basic solution - saponified soapstock.

References

Dowd, M. K. (1996). Compositional characterization of cottonseed soapstocks. Journal of the American Oil Chemists’ Society, 73, 1287–1295.

Dowd, M. K. (1998). Gas chromatographic characterization of soapstocks from vegetable oil refining. Journal of Chromatography A, 816, 185–193.

Dowd, M. K., & Pelitire, S. M. (2001). Recovery of gossypol acetic acid from cottonseed soapstock. Industrial Crops and Products, 14, 113–123.

Dumont, M.-J., & Narine, S. S. (2007). Soapstock and deodorizer distillates from North American vegetable oils: Review on their characterization, extraction and utilization. Food Research International, 40(8), 957–974. doi:10.1016/j.foodres.2007.06.006

D.P. Geller and J.W. Goodrum. Rheology of Vegetable Oil Analogs and Triglycerides. JAOCS, Vol. 77, no. 2 (2000). 111-114.

Braulio Macias-Rodriguez & Alejandro G. Marangoni. Rheological characterization of triglyceride shortenings. Rheol Acta (2016) 55:767–779. https://doi 10.1007/s00397-016-0951-6.

Waliszewski, K. (1987). Fatty-acid composition of different oils and their soapstocks. Nutrition Reports International, 35, 87–91.

K. Barbusinski, S. Fajkis and B. Szelag. Optimization of soapstock splitting process to reduce the concentration of impurities in wastewater. Journal of Cleaner Production 280 (2021) 124459. https://doi.org/10.1016/j.jclepro.2020.124459

El-Adly, R. A. (2000). Producing multigrade lubricating greases from animal and vegetable fat by-products. Synthetic Lubrication, 16, 323–332.

Adhvaryu, A., Sung, C., & Erhan, S. Z. (2005). Fatty acids and antioxidant effects on grease microstructures. Industrial Crops and Products, 21, 285–291.

Delgado, M. A., Valencia, C., Sanchez, M. C., Franco, J. M., & Gallegos,C. (2006). Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating greases. Industrial & Engineering Chemistry Research, 45, 1902–1910.

Ana Filipa Ferreira, Sebastiгo Alves, Renato Henriques de Carvalho. Study and transport optimization of a vegetable oil degumming and neutralization byproduct. file:///C:/Users/User/Downloads/Resumo%20Alargado.pdf.

Почерников В.И., Ульянов Ю.В., Василинец И.М., Силкина Н.И. и др. Реологические свойства основы хозяйственного мыла. Масложировая промышленность. - 1986. -N7.-С. 18.

Руководство по методам исследования, технохимическому контролю и учету производства в масложировой промышленности. Т. 4. /Под ред. В.П.Ржехина и А.Г.Сергеева. - Л.: ВПИИЖ -1963. - 424 с.

Г. Г. Лутфуллина, К. С. Гусева, К. Е. Мартынова. Влияние концентрации растворов моющих составов на их пенообразующую способность. Вестник Казанского технологического университета. 2014. С.86-87.

Bikerman J.J. Foams.- Appl. Phys. & Eng.-V.lO., N.Y.: Springer -Verl., 1973.-337 p.

Foams. Proc. Symp. 1975 / Akers R.J., eds. L.: Acad. Press, 1976.- 299p.

Плетнев М.Ю., Чистяков Б.Е., Власенко И.Г. Современные пенообразующие составы: свойства, области применения и методы испытаний.-М.: ЦНИИТЭНефтехим, 1984.-40с.

Нартикоева А.О., Бутина Е.А., Герасименко Е.О., Буханов П.В.Фосфолипидно-гелевосковой соапсток – перспективное сырье для мыловаренного производства / Материалы докл Всерос. научно-практической конф. с межд. участием «Инновационные технологии в создании продуктов питания нового поколения», 1-3 декабря 2005г., г.Краснодар, С. 128-130.

Downloads

Published

2023-07-30

How to Cite

Shamuratov, S. K. ugli, Baltaev, U. S., Sagdullaeva, D. S., & Kuramboev, B. F. (2023). PHYSICAL AND CHEMICAL PROPERTIES OF THE PROCESS OF SAPONIFICATION OF COTTON SOAPSTOCK UNDER ULTRASONIC INFLUENCE. RESEARCH AND EDUCATION, 2(7), 10–20. Retrieved from https://researchedu.org/index.php/re/article/view/4647