O‘SIMLIKKA XOS CRISPR VEKTORLARI VA ULARNING TEXNIK AFZALLIKLARI
Keywords:
CRISPR/Cas9, Csy4-gRNA, asosiy tahrirlash, multiplekslash, endonukleazalar.Abstract
CRISPR/Cas vositachiligida genomni tahrirlash o‘simlik genomini manipulyatsiya qilishning inqilobiy yondashuvidir. Biroq, ushbu texnologiyaning muvaffaqiyati aniq vektor va boshqa komponentlarni tanlashga bog‘liq. O‘simlikka xos CRISPR/Cas vektori odatda Cas dan iboratgen, maqsadga xos gRNK, yetakchi ketma-ketligi, tanlangan marker geni, aniq promouterlar va boshqa qismlar. Bir joyda CRISPR vektorlari haqida to‘liq ma’lumot yo‘qligi sababli har bir tadqiqot uchun o‘ziga xos vektorni tanlash har doim qiyin bo‘lgan. Bu erda biz vektor tanlashda va kerakli o‘simlik genomini samarali tahrirlashda juda foydali bo‘lgan turli xil muhim elementlarning har bir texnik jihatlarini muhokama qildik.
References
Beumer K.J., Trautman J.K., Christian M., Dahlem T.J., Lake C.M., Hawley R.S., Grunwald D.J., Voytas D., Carroll D. Comparing Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases for Gene Targeting in Drosophila. G3 Genes Genomes Genet. 2013;3:1717–1725. doi: 10.1534/g3.113.007260.
Razzaq A., Saleem F., Kanwal M., Mustafa G., Yousaf S., Arshad H.M.I., Hameed M.K., Khan M.S., KhanJoyia F.A. Mod-ern trends in plant genome editing: An inclusive review of the CRISPR/Cas9 Toolbox. Int. J. Mol. Sci. 2019;20:4045. doi: 10.3390/ijms20164045.
Liu J.-J., Orlova N., Oakes B.L., Ma E., Spinner H.B., Baney K.L.M., Chuck J., Tan D., Knott G.J., Harrington L.B., et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. 2019;566:218–223. doi: 10.1038/s41586-019-0908-x.
Pausch P., Al-Shayeb B., Bisom-Rapp E., Tsuchida C.A., Li Z., Cress B.F., Knott G.J., Jacobsen S.E., Banfield J.F., Doudna J.A. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science. 2020;369:333–337. doi: 10.1126/science.abb1400.
Upadhyay S.K., Kumar J., Alok A., Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3 Genes Genomes Genet. 2013;3:2233–2238. doi: 10.1534/g3.113.008847.
Kaur N., Alok A., Shivani , Kumar P., Kaur N., Awasthi P., Chaturvedi S., Pandey P., Pandey A., Pandey A.K., et al. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab. Eng. 2020;59:76–86. doi: 10.1016/j.ymben.2020.01.008.
Alok A., Kumar J., Jogam P., Sandhya D. Recent Trends and Techniques in Plant Metabolic Engineering. Springer; Singapore: 2018. CRISPR/Cas9-mediated gene editing tool and fathomless genetic and meta-bolic engineering applications in plants; pp. 167–179.
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829.
Ran F.A., Hsu P., Lin C.-Y., Gootenberg J., Konermann S., Trevino A.E., Scott D.A., Inoue A., Matoba S., Zhang Y., et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. 2013;154:1380–1389. doi: 10.1016/j.cell.2013.08.021.
Mali P., Aach J., Stranges P., Esvelt K., Moosburner M., Kosuri S., Yang L., Church G.M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 2013;31:833–838. doi: 10.1038/nbt.2675.
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P., Wu X., Jiang W., Marraffini L.A., et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143.
Hsu P., A Scott D., Weinstein J., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E., Wu X., Shalem O., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013;31:827–832. doi: 10.1038/nbt.2647
Nishimasu H., Ran F.A., Hsu P., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell. 2014;156:935–949. doi: 10.1016/j.cell.2014.02.001.
Nishimasu H., Cong L., Yan W.X., Ran F.A., Zetsche B., Li Y., Kurabayashi A., Ishitani R., Zhang F., Nureki O. Crystal Structure of Staphylococcus aureus Cas9. Cell. 2015;162:1113–1126. doi: 10.1016/j.cell.2015.08.007.
Esvelt K.M., Mali P., Braff J.L., Moosburner M., Yaung S., Church G.M. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods. 2013;10:1116–1121. doi: 10.1038/nmeth.2681.
Fonfara I., Le Rhun A., Chylinski K., Makarova K.S., Lécrivain A.-L., Bzdrenga J., Koonin E.V., Charpentier E. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2013;42:2577–2590. doi: 10.1093/nar/gkt1074.
Kim H.K., Lee S., Kim Y., Park J., Min S., Choi J.W., Huang T.P., Yoon S., Liu D.R., Kim H.H. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nat. Biomed. Eng. 2020;4:111–124. doi: 10.1038/s41551-019-0505-1.
Xu Z., Kuang Y., Ren B., Yan D., Yan F., Spetz C., Sun W., Wang G., Zhou X., Zhou H. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 2021;22:1–15. doi: 10.1186/s13059-020-02231-9.
Kleinstiver B., Prew M.S., Tsai S.Q., Topkar V.V., Nguyen N.T., Zheng Z., Gonzales A.P.W., Li Z., Peterson R.T., Yeh J.-R.J., et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523:481–485. doi: 10.1038/nature14592.
Hu J.H., Miller S., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556:57–63. doi: 10.1038/nature26155.