CRISPR-CAS9 TIZIMI YORDAMIDA GENLARNI TAHRIRLASH VA HOSILNI YAXSHILASH

Authors

  • Azamat Madaminovich Xayitbayev Namangan davlat universiteti magistranti
  • Mirzakamol Sobitjonovich Ayubov O‘zR FA Genomika va bioinformatika markazi

Keywords:

CRISPR/Cas tizimi, genomni tahrirlash, ovqatlanishni yaxshilash, kasalliklarga chidamlilik, metabolik muhandislik, gen ekspressiyasini tartibga solish, CRISPR ribonukleoproteinlari.

Abstract

Genomni tahrirlash texnologiyalaridagi yutuqlar funktsional genomika va hosilni yaxshilash sohalarida inqilob qildi. CRISPR/Cas9 (klasterli muntazam intervalgacha qisqa palindromik takrorlash) -Cas9 genetik muhandislik uchun ko‘p maqsadli texnologiya bo‘lib, u hidoyatRNK (gRNK) ning ma’lum bir ketma-ketlik va Cas9 endonukleaza faolligiga to‘ldirilishiga asoslanadi. Bu qishloq xo‘jaligining tadqiqot sohasini kengaytirdi, zararli xususiyatlarni yo‘q qilish yoki muhim belgilarni qo‘shish bilan yangi o‘simlik navlarini yaratish uchun yangi imkoniyatlar yaratdi. Ushbu RNK tomonidan boshqariladigan genomni tahrirlash texnologiyasi o‘simlik biologiyasining alohida sohalarida innovatsion yangilik bo‘lib chiqdi. CRISPR texnologiyasi doimiy ravishda rivojlanib bormoqda, jumladan nokautlar yaratish kabi turli genetik manipulyatsiyalar uchun variantlar; aniq o‘zgartirishlar kiritish, multipleks genom muhandisligi va maqsadli genlarni faollashtirish va repressiya qilish. Ko‘rib chiqish CRISPR merosi davomidagi taraqqiyotni ta’kidlaydi. Biz CRISPR/Cas9 vositalarining koʻp funksiyalari, imkoniyatlari va maxsus ilovalari bilan tez evolyutsiyasini oʻrganib chiqdik. Turli xil ishlar orasida o‘simliklarning oziqlanishini yaxshilash, o‘simliklarning kasalliklarga chidamliligini oshirish va qurg‘oqchilikka chidamli o‘simliklarni etishtirish ko‘rib chiqiladi. Sharh shuningdek, Cas9-gRNK komplekslarini o‘simlik hujayralariga etkazib berishning an’anaviy usullari haqida ba’zi ma’lumotlarni o‘z ichiga oladi va plazmidga asoslangan CRISPR tizimida mavjud bo‘lgan turli cheklovlarga yechim sifatida paydo bo‘lgan CRISPR ribonukleoproteinlarining (RNPs) paydo bo‘lishini o‘z ichiga oladi. Biz CRISPR/Cas9 vositalarining koʻp funksiyalari, imkoniyatlari va maxsus ilovalari bilan tez evolyutsiyasini oʻrganib chiqdik. Turli xil ishlar orasida o‘simliklarning oziqlanishini yaxshilash, o‘simliklarning kasalliklarga chidamliligini oshirish va qurg‘oqchilikka chidamli o‘simliklarni etishtirish ko‘rib chiqiladi. Sharh shuningdek, Cas9-gRNK komplekslarini o‘simlik hujayralariga etkazib berishning an’anaviy usullari haqida ba’zi ma’lumotlarni o‘z ichiga oladi va plazmidga asoslangan CRISPR tizimida mavjud bo‘lgan turli cheklovlarga yechim sifatida paydo bo‘lgan CRISPR ribonukleoproteinlarining (RNPs) paydo bo‘lishini o‘z ichiga oladi. Biz CRISPR/Cas9 vositalarining koʻp funksiyalari, imkoniyatlari va maxsus ilovalari bilan tez evolyutsiyasini oʻrganib chiqdik. Turli xil ishlar orasida o‘simliklarning oziqlanishini yaxshilash, o‘simliklarning kasalliklarga chidamliligini oshirish va qurg‘oqchilikka chidamli o‘simliklarni etishtirish ko‘rib chiqiladi. Sharh shuningdek, Cas9-gRNK komplekslarini o‘simlik hujayralariga etkazib berishning an’anaviy usullari haqida ba’zi ma’lumotlarni o‘z ichiga oladi va plazmidga asoslangan CRISPR tizimida mavjud bo‘lgan turli cheklovlarga yechim sifatida paydo bo‘lgan CRISPR ribonukleoproteinlarining (RNPs) paydo bo‘lishini o‘z ichiga oladi.

 

References

Abudayyeh O. O., Gootenberg J. S., Konermann S., Joung J., Slaymaker I. M., Cox D. B., et al. (2016). C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353 557–566. 10.1126/science.aaf5573

Agrotis A., Ketteler R. (2015). A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front. Genet. 6:300. 10.3389/fgene.2015.00300

Ahloowalia B. S., Maluszynski M. (2001). Induced mutations- A new paradigm in plant breeding. Euphytica 118 167–173. 10.1023/A:1004162323428

Ainley W. M., Sastry-Dent L., Welter M. E., Murray M. G., Zeitler B., Amora R., et al. (2013). Trait stacking via targeted genome editing. Plant Biotechnol. J. 11 1126–1134. 10.1111/pbi.12107

Alagoz Y., Gurkok T., Zhang B., Unver T. (2016). Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep. 6 309–310. 10.1038/srep30910

Ali Z., Abulfaraj A., Idris A., Ali S., Tashkandi M., Mahfouz M. M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16 238–249. 10.1186/s13059-015-0799-6

Amitai G., Sorek R. (2016). CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14 67–76. 10.1038/nrmicro.2015.14

Andersson M., Turesson H., Nicolia A., Fält A. S., Samuelsson M., Hof-vander P. (2016). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR- Cas9 expression in protoplasts. Plant Cell Rep. 36 117–128. 10.1007/s00299-016-2062-3

Baltes N. J., Gil-Humanes J., Cermak T., Atkins P. A., Voytas D. F. (2014). DNA replicons for plant genome engineering. Plant Cell 26 151–163. 10.1105/tpc.113.119792

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 1709–1712. 10.1126/science.1138140

Bastet A., Robaglia C., Gallois J. C. (2017). eIF4E Resistance: Natural Variation Should Guide Gene Editing. Trends Plant Sci. 17 S1360–S1385. 10.1016/j.tplants.2017.01.008

Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., Marraffini L. A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR–Cas system. Nucleic Acids Res. 41 7429–7437. 10.1093/nar/gkt520

Bikard D., Marraffini L. A. (2013). Control of gene expression by CRISPR-Cas systems. F1000Prime Rep. 5:47. 10.12703/P5-47

Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326 1509–1512. 10.1126/science.1178811

Boettiger A. N., Bintu B., Moffitt J. R., Wang S., Beliveau B. J., Fudenberg G., et al. (2016). Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529 418–422. 10.1038/nature16496

Bolotin A., Quinquis B., Sorokin A., Ehrlich S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extra-chromosomal origin. Microbiology 151 2551–2561. 10.1099/mic.0.28048-0

Bortesi L., Fischer R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33 41–52. 10.1016/j.biotechadv.2014.12.006

Brooks C., Nekrasov V., Lippman Z. B., Van Eck J. (2014). Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 166 1292–1297. 10.1104/pp.114.247577

Brouns S. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J., Snijders A. P., et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 960–964. 10.1126/science.1159689

Cermak T., Baltes N. J., Cegan R., Zhang Y., Voytas D. F. (2015). High frequency, precise modification of the tomato genome. Genome Biol. 16 232–246. 10.1186/s13059-015-0796-9

Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., et al. (2016). Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17 1140–1153. 10.1111/mpp.12375

Char S. N., Neelakandan A. K., Nahampun H., Frame B., Main M., Spalding M. H., et al. (2016). An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 15 257–268. 10.111/pbi.12611

Downloads

Published

2023-04-30

How to Cite

Xayitbayev , A. M., & Ayubov, M. S. (2023). CRISPR-CAS9 TIZIMI YORDAMIDA GENLARNI TAHRIRLASH VA HOSILNI YAXSHILASH. RESEARCH AND EDUCATION, 2(4), 468–480. Retrieved from https://researchedu.org/index.php/re/article/view/3301