INTELLEKTUAL TRANSPORT TIZIMLARINING ILOVALARI ISH FAOLIYATINI YAXSHILASH UCHUN TRAFFIKNI BASHORAT QILISH
Keywords:
traffik, regressiya, intellektual transport tizimi (ITT), mashinali o‘qitish, bashorat qilishAbstract
Maqola aqlli transport tizimlarida amalga oshirilishi mumkin bo‘lgan transport bashorati bilan bog‘liq bo‘lib, u o‘tgan yilgi ma’lumotlar to‘plami va so‘nggi yil ma’lumotlari o‘rtasidagi prognozni o‘z ichiga oladi, natijada aniqlik va o‘rtacha kvadrat xatoni ta’minlaydi. Ushbu bashorat zudlik bilan tirbandlik holatini tekshirishga muhtoj bo‘lgan odamlar uchun foydali bo‘ladi. Trafik ma’lumotlari 1 soatlik vaqt oralig‘i asosida taxmin qilinadi. Ushbu bashoratdan trafikning jonli statistikasi tahlil qilinadi. Shunday qilib, avtomobil foydalanuvchilari yo‘lda ketayotganda buni tahlil qilish osonroq bo‘ladi. Tizim barcha yoʻllarning maʼlumotlarini taqqoslaydi va shaharning eng koʻp aholi gavjum yoʻllarini aniqlaydi. Maqolada Sklearn, Keras va Tensorflow kutubxonalarini import qilish orqali mashinali o‘qitishdan foydalangan holda trafikni bashorat qilish uchun regressiya modelini taklif qilinadi.
References
Vlahogianni, E. I., M. G. Karlaftis, and J. C. Golias. Optimized and Meta-Optimized Neural Networks for Short Term Traffic Flow Prediction: A Genetic Approach. Transportation Research Part C: Emerging Technologies, Vol. 13, No. 3, 2005, pp. 211–234.
Machine Learning Approach to Short-Term Traffic Congestion Prediction in a Connected Environment AmrElfar1, Alireza Talebpour2, and Hani S. Mahmassani1, National Academy of Sciences: Transportation Research Board 2018.
Big data-driven machine learning-enabled traffic flow prediction Fanhui Kong1 Jian Li1 Bin Jiang2 Tianyuan Zhang3 Houbing Song3, 2018.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845248/
Bao G, Zeng Z, Shen Y. Region stability analysis and tracking control of memristive recurrent neural network. Neural Netw. 2017;5(1):74-89.
Jiang, X., and H. Adeli.Dynamic Wavelet Neural Network Model for Traffic Flow Forecasting. Journal of Transportation Engineering, Vol. 131, No. 10, 2005, pp. 771– 779
YuhanJia, Jianping Wu, and Ming Xu, Traffic Flow Prediction with Rainfall Impact Using a Deep Learning Method,Journal of Advanced Transportation, 2017.
Felix Kunde Alexander Hartenstein Stephan Pieper Petra Sauer, Traffic prediction using a Deep Learning paradigm, CEUR-WS.org, 2017
https://www.kaggle.com/fedesoriano/traffic-prediction-dataset
https://www.hindawi.com/journals/jat/2021/8878011/
https://www.shanelynn.ie/pandas-iloc-loc-select-rows-and-columns-dataframe/
https://matplotlib.org/2.0.2/api/pyplot_api.html
Azzouni A, Pujolle G. A long short-term memory recurrent neural network framework for network traffic matrix prediction.Comput Sci. 2017;3(6):18-27
Ioannis LoumiotisRoad Traffic Prediction Using Artificial Neural Networks 2018
https://www.catalyzex.com/s/Traffic%20Prediction
https://www.geeksforgeeks.org/formatting-dates-in-python/
https://www.scitepress.org/Papers/2016/58957/pdf/index.html
Kuchkorov, T., Khamzaev, J., Allamuratova, Z., & Ochilov, T. (2021, November). Traffic and road sign recognition using deep convolutional neural network. In 2021 International Conference on Information Science and Communications Technologies (ICISCT) (pp. 1-5). IEEE. DOI: 10.1109/ICISCT52966.2021.9670228
Khamzaev J., Yaxshiboyev R., Ochilov T., Siddiqov B. Driver sleepiness detection using convolution neural network. Central Asian Journal of Education and Computer Sciences. VOLUME 1, ISSUE 4, AUGUST 2022(CAJECS), ISSN: 2181-3213
Kuchkarov T. A., Hamzayev J. F., Allamuratova Z. J. Tracking the flow of motor vehicles on the roads with YOLOv5 and deepsort algorithms. Международной научной конференции, Минск, 23 ноября 2022 / Белорусский государственный университет информатики и радиоэлектроники ; редкол.: Л. Ю. Шилин [и др.]. – Минск : БГУИР, 2022. – С. 61–62. https://libeldoc.bsuir.by/handle/123456789/49250
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.