НЕКОТОРЫЕ ЭЛЕМЕНТАРНЫЕ СВОЙСТВА ИДЕМПОТЕНТНЫХ ВЕРОЯТНОСТНЫХ МЕР

Тожиев Илхом Ибраимович

кандидат физико-математических наук, НГГТУ,

email: adamjon-2015@umail.uz

Жумакулова Зилола Шухрат кизи

магистрант, НГГИ

Аннотация. В этой работе устанавливаются некоторые элементарные свойства идемпотентных вероятностных мер.

Ключевые слова: вероятностная мера, идемпотентная вероятностная мера, полукольцо, идемпотентное полукольцо, полуполе, деквантизация Маслова.

Annotation. In this paper, we establish some elementary properties of idempotent probability measures.

Keywords: probability measure, idempotent probability measure, semiring, idempotent semiring, semifield, Maslov's dequantisation.

Пусть S — множество, снабженное двумя алгебраическими операциями: сложением \bigoplus и умножением \bigcirc . Множество S называется полукольцом, если выполнены следующие условия:

- (i) сложение \bigoplus и умножение ассоциативны;
- (ii) сложение \bigoplus коммутативно;
- (iii) умножение дистрибутивно относительно сложения \bigoplus .

Полукольцо S называется коммутативным, если умножение \bigcirc коммутативно. Единица полукольца S — это элемент $1 \in S$, такой, что $1 \bigcirc x = x \bigcirc 1 = x$ для всех $x \in S$. Нулем полукольца S называется элемент $0 \in S$, такой, что $0 \ne 1$ и $0 \bigoplus x = x$, $0 \bigcirc x = x \bigcirc 0 = 0$ для всех $x \in S$. Полукольцо S называется идемпотентным, если $x \bigoplus x = x$ всех $x \in S$. Полукольцо S с нулем S и единицей S называется полуполем, если всякий ненулевой элемент S0 обратим.

Пусть $(S, \bigoplus, \bigcirc, 0, 1)$ — идемпотентное полукольцо. На S естественным образом возникает частичный порядок \prec : для элементов a, $b \in S$ по определению $a \prec b$ тогда и только тогда, когда $a \oplus b = b$. Таким образом, все элементы полукольца S неотрицательны: $0 \prec x$ для всех $x \in S$.

Идемпотентным аналогом числовых функций являются отображения $X \to S$, где X — произвольное множество, S — идемпотентное полукольцо. S — значные функции можно складывать, перемножать, и умножать на элементы S.

Идемпотентным аналогом линейного пространства функций является множество S^X S -значных функций, замкнутое относительно сложения функций и умножения функций на элементы S (которое является S -полумодулем). По определению функционал $f:S^X\to S$ называется идемпотентным линейным функционалом, если

$$f(\lambda_1 \odot \phi_1 \oplus \lambda_2 \odot \phi_2) = \lambda_1 \odot f(\phi_1) \oplus \lambda_2 \odot f(\phi_2)$$

для всех $\lambda_1, \lambda_2 \in S$ и $\phi_1, \phi_2 \in S^X$. Множество всех идемпотентных линейных функционалов $f: S^X \to S$ обозначают через B(X, S); это множество замкнуто относительно сложения функционалов и умножения функционалов на элементы S.

Пусть \mathbb{R} – поле вещественных чисел и \mathbb{R}_+ – полуполе неотрицательных вещественных чисел (относительно обычных операций). Замена переменных

 $x\mapsto u=h\ln x,\, h>0$, определяет отображение $\Phi_h\colon\mathbb{R}_+\to S=\mathbb{R}\cup\{-\infty\}$. Пусть операции сложения и умножения на S являются образами обычных операций на \mathbb{R} при отображении Φ_h , т. е. $u\bigoplus_h v=h\ln\left(exp\left(\frac{u}{h}\right)+exp\left(\frac{v}{h}\right)\right),u\odot v=u+v,$ $0=-\infty=\Phi_h(0)$, $1=0=\Phi_h(1)$. Легко видеть, что при $h\to 0$ имеем $u\bigoplus_h v\to max\{u,v\}$. Следовательно, множество S образует полуполе относительно операций $u\bigoplus v=max\{u,v\}$ и $u\odot v=u+v$, нуля $0=-\infty$ и единицы 1=0. Полученное коммутативное полуполе принято обозначать через \mathbb{R}_{max} . Оно идемпотентно. Изложенная конструкция восходит к работе [1] В. П. Маслова. Она называется деквантизацией Маслова.

Пусть X – компакт, C(X) – алгебра непрерывных функций на X. На C(X) можно определить операции \oplus и \odot следующим образом: $\phi \oplus \psi = max\{\phi,\psi\}$ и $\phi \odot \psi = \phi + \psi$, $\phi, \psi \in C(X)$. Для $\lambda \in \mathbb{R}$ через λ_X обозначим постоянную функцию, везде на X принимающую значение λ .

Определение 1 [2; 3]. Функционал m: C(X)® $\mathbf{R} (\subseteq \mathbb{R}_{max}())$ называется идемпотентной вероятностной мерой, если он обладает следующими свойствами:

- (a) $\mu(\lambda_X) = \lambda$ для всех $\lambda \in \mathbb{R}$ (нормированность функционала μ);
- (b) $\mu(\lambda \odot \phi) = \lambda \odot \mu(\phi)$ для всех $\lambda \in \mathbb{R}$ и $\phi \in C(X)$ (однородность функционала μ относительно \odot);
- (c) $\mu(\phi \oplus \psi) = \mu(\phi) \oplus \mu(\psi)$ для всех $\phi, \psi \in C(X)$ (аддитивность функционала μ относительно \oplus).

Для компакта X множество всех идемпотентных вероятностных мер $\mu \colon \mathcal{C}(X) \to \mathbb{R}$ обозначается через I(X). Ясно, что $I(X) \subset \mathbb{R}^{\mathcal{C}(X)}$. Множество I(X) снабжается топологией, индуцированной топологией тихоновского произведения $\mathbb{R}^{\mathcal{C}(X)}$. Предбазу окрестностей идемпотентной вероятностной меры $\mu \in I(X)$ образуют множества вида

$$\langle \mu; \phi_1, \dots, \phi_n; \varepsilon \rangle = \{ \nu \in I(X) : |\nu(\phi_i) - \mu(\phi_i)| < \varepsilon, i = 1, \dots, n \},$$

где $\mu \in I(X)$, $\phi_i \in C(X)$, i = 1, ..., n и $\varepsilon > 0$.

Здесь уместно привести пример идемпотентной меры. Пусть $x_1, \ldots, x_1 \in X$ и числа $\lambda_1, \ldots, \lambda_n \in \mathbb{R}_{max}$ удовлетворяют условию $\max\{\lambda_1, \ldots, \lambda_n\} = 0$. Определим $\mu \colon C(X) \to \mathbb{R}$ следующим образом: $\mu(\phi) = \max\{\phi(x_i + \lambda_i) | i = 1, \ldots, n\}$. Как обычно, для каждого $x \in X$ через δ_x (или $\delta(x)$) обозначаем функционал на C(X), определенный формулой $\delta_x(\phi) = \phi(x), \phi \in C(X)$ (вероятностная мера Дирака, сосредоточенная в точке x). Тогда можно записать $m = \sum_{i=1}^n l_i \in d_x$.

Пусть $\mu: \mathcal{C}(X) \to \mathbb{R}$ — идемпотентная вероятностная мера, F — замкнутое, U — открытое подмножества $X, \alpha \in \mathbb{R}$. Положим:

если
$$\alpha \geq 0$$
, то $\mu(\alpha \chi_F) = \inf\{\mu(\phi): \phi \in \mathcal{C}(X), \phi \geq \alpha \chi_F\}$, если $\alpha \leq 0$, то $\mu(\alpha \chi_F) = \sup\{\mu(\phi): \phi \in \mathcal{C}(X), \phi \leq \alpha \chi_F\}$, если $\alpha \geq 0$, то $\mu(\alpha \chi_U) = \sup\{\mu(\phi): \phi \in \mathcal{C}(X), \phi \leq \alpha \chi_U\}$, если $\alpha \leq 0$, то $\mu(\alpha \chi_U) = \inf\{\mu(\phi): \phi \in \mathcal{C}(X), \phi \geq \alpha \chi_U\}$,

где χ_A – характерикческая функция множества $A \subseteq X$.

Легко видеть, что $\mu(c \odot \alpha \chi_A) = c \odot \mu(\alpha \chi_A)$ для любого $c \in \mathbb{R}$ и произвольного открытого или замкнутого $A \subseteq X$. Идемпотентную вероятностную меру μ продолжим на множество

$$C(X) \oplus \{\alpha \chi_A : \alpha \in \mathbb{R}\} \equiv \{\phi \oplus \alpha \chi_A : \phi \in C(X), \alpha \in \mathbb{R}\}$$

следующим образом $\mu(\phi \oplus \alpha \chi_A) = \mu(\phi) \oplus \mu(\alpha \chi_A)$. Итак, далее, для открытых или замкнутых подмножеств A_1, \ldots, A_n компакта X и вещественных чисел $\alpha_1, \ldots, \alpha_n$ положим

$$\widetilde{\mu}(\phi \bigoplus_{i=1}^{n} \alpha_i \chi_{A_i}) = \mu(\phi) \bigoplus_{i=1}^{n} \mu(\alpha_i \chi_{A_i}).$$

Таким образом µ продолжена на множество

$$\begin{split} &\aleph(X) := C(X) \bigoplus \{c \odot \bigoplus_{i=1}^n \quad \alpha_i \chi_{A_i} : A_i \subset X, \, c, \, \alpha_i \in \mathbb{R}, \, i = 1, \dots, n, \, n \in N\} \equiv \\ &\equiv \{\phi \bigoplus c \odot \bigoplus_{i=1}^n \quad \alpha_i \chi_{A_i} : \phi \in C(X), \, A_i \subset X, \, c, \, \alpha_i \in \mathbb{R}, \, i = 1, \dots, n, \, n \in N\}. \end{split}$$

Легко заметить, что верно следующее утверждение.

Теорема 1. Для любого компакта X множество $\aleph(X)$ является max-plus линейным подпространством пространства B(X) ограниченных функций X.

Согласно варианту теоремы Хана-Банаха для идемпотентных линейных функционалов из теоремы 1 вытекает

Следствие 1. Всякая идемпотентная вероятностная мера $\mu: \mathcal{C}(X) \to \mathbb{R}$ продолжается на B(X). При этом существует продолжение $\mu': B(X) \to \mathbb{R}$, такое, что $\mu'|_{\mathbb{N}(X)} = \tilde{\mu}$.

Для открытого подмножества U компакта X, вещественного числа λ положим

$$\langle U; \varepsilon \rangle_{\lambda} = \{ \mu \in I(X) : \mu(\lambda \chi_{U}) > \varepsilon \}, \lambda > 0$$

$$\langle U; -\varepsilon \rangle_{\lambda} = \{ \mu \in I(X) : \mu(\lambda \chi_U) < -\varepsilon \}, \lambda < 0.$$

Предложение 1. Для всякого открытого подмножества U компакта X, для любых $\lambda \in \mathbb{R}$ и $\varepsilon \in (0;+\infty)$ множества $\langle U; \varepsilon \rangle_{\lambda}$ и $\langle U; -\varepsilon \rangle_{\lambda}$ открыты в I(X).

Доказательство этого предложение состоит из дословного повторения аналогичного утверждения для слабо аддитивных функционалов [4].

Теорема 2. Пусть F — замкнутое подмножество компакта X, $\mu \in I(X)$.

Тогда следующие условия равносильны:

$$(i) \mu(\alpha \chi_{\scriptscriptstyle E}) = \alpha, \alpha \in \mathbb{R}.$$

$$(ii)\ \mu\bigl(\alpha\chi_{X\backslash F}\bigr)=0,\,\alpha\in\mathbb{R}.$$

(iii)
$$\mu(\phi \chi_F) = \mu(\phi), \phi \in C(X)$$
.

$$(iv)\ \mu\bigl(\phi\chi_{X\backslash F}\bigr)=0,\,\phi\in C(X)$$

(v) supp $\mu \subseteq F$.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- **1.** Маслов В.П. Методы операторов. М.: «Мир». 1987.
- **2.** Заричный М.М. Пространства и отображения идемпотентных мер.// Изв. РАН. Серия математическая. Т. 74. № 3. 2010. С. 45-64.
- **3.** Zarichniy M. Idempotent probability measures, I// arXiv:math.GN/0608754. V. 1. 30 Aug. 2006.
- **4.** Заитов А.А. Слабо аддитивные функционалы на топологических пространствах.// Доктр. дис. ИМИТ АН РУз Ташкент. 2011. 208 стр.
- **5.** Заитов А.А., Тожиев И.И. Функциональные представление замкнутых подмножеств компакта.// Узбекский математический журнал. Ташкент. 2010. № 1. С. 53-63.
- **6.** Тожиев И.И. Об одной метрике пространства идемпотентных вероятностных мер.// Узбекский математический журнал. Ташкент. 2010. № 4. С. 165-172.
- **7.** Заитов А.А., Тожиев И.И. Функтор идемпотентных вероятностных мер и равномерная метризуемость функторов.// Узбекский математический журнал. Ташкент. 2011. № 2. С. 66-74.
- **8.** Zaitov A.A., Tojiev I.I. On a metric on the space of idempotent probability measures.// arXiv:1006.3902v2 [math.GN] 15 Mar 2012.
- **9.** Zaitov A.A., Tojiev I.I. On uniformly metrizability of the functor of idempotent probability measures.// arXiv:1204.0074v1 [math.GN] 31 Mar 2012.
- **10.** Тожиев , И., & Жумакулова , 3. . (2023). ОБ ИДЕМПОТЕНТНЫХ ВЕРОЯТНОСТНЫХ МЕР. Евразийский журнал математической теории и компьютерных наук, 3(4), $7{-}14$. извлечено от https://inacademy.uz/index.php/EJMTCS/article/view/11904