TA’LIM BOSHQARUVI FUNKSIYALARINING ASOSIY TENDENSIYALARI VA ALGORITMIK MODELLARI

Authors

  • Hamid Azamovich Choriyev Termiz davlat universiteti, 2-kurs doktoranti

Keywords:

Ta’lim boshqaruvi, funksiya, algoritmik modellar, ma’lumotlar tahlili, statistik analiz, ma’lumotlar ombori, o‘rganish texnologiyalari, o‘zlashtirish, chiziqli algebra, bayonotchi o‘qitish, ta’limning avtomatlashtirilgan usullari, tajriba yozish, matn tahlil, axborotlar intizomiga tushuntirish.

Abstract

Bu maqola, ta’lim boshqaruvi funksiyalarining asosiy tendensiyalari va algoritmik modellari mavzusini taqdim etadi. Maqolada, ta’lim boshqaruvi usullari, asosiy maqsadlari, shakllari, usullari, va ularga oid boshqa katta qismlari ta’riflangan. Python tilida ta’lim boshqaruvi funksiyalarining va algoritmik modellarining yaratilishi uchun qo‘llanadigan kutubxonalar, usullar va algoritmlar tavsiflangan. Maqola tadqiqot metodologiyasi va qo‘llanish manbalari bo‘yicha ham ma’lumotlar taqdim etildi. Tahlil natijalari va ularning o‘zgarishi haqida ma’lumotlar, o‘zaro solishtirishlar va bu sohada amalga oshiriladigan boshqa tadqiqotlar haqida ham gapirildi.

References

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques (1st ed.). Cambridge, MA: MIT Press.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

Mitchell, T. (1997). Machine learning (1st ed.). New York, NY: McGraw-Hill.

Murphy, K. P. (2012). Machine learning: A probabilistic perspective (1st ed.). Cambridge, MA: MIT Press.

Ng, A. (2017). Machine learning yearning. Retrieved from https://www.deeplearning.ai/machine-learning-yearning/

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning (1st ed.). Cambridge, MA: MIT Press.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms (1st ed.). New York, NY: Cambridge University Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). Cambridge, MA: MIT Press.

Downloads

Published

2023-04-30

How to Cite

Choriyev, H. A. (2023). TA’LIM BOSHQARUVI FUNKSIYALARINING ASOSIY TENDENSIYALARI VA ALGORITMIK MODELLARI. TA’LIMNI RIVOJLANTIRISHDA INNOVATSION TEXNOLOGIYALARNING O‘RNI VA AHAMIYATI, 1(1), 36–48. Retrieved from https://researchedu.org/index.php/konferensiya/article/view/3338