METHODS AND ALGORITHMS FOR OBJECT RECOGNITION

Authors

  • Orolbek Soatmuminovich Hayitov TATU( master 301-21 group)

Keywords:

Image processing, flag vector, neural network, syntactic analysis.

Abstract

The paper  deals with  problems  of  computer  image  processing  with a  view to applications  in  the  area  of  industrial  robotics.  Besides  classical  methods  for  object recognition especially nontraditional methods and  algorithms (the Multi Layer Perceptron neural  network  algorithm  and  the  Levenshtein  algorithm)  were  tested  in  simulation environment. Implemented algorithms were tested on the simulated objects of technological scene  given.  The  results  of  the  simulation  experiments  show  that  the  Multi  Layer Perceptron  neural  network  with  the  Back-Propagation  algorithm  and  the  Levenshtein algorithm are  very promising for object recognition of technological scenes for the use of industrial robots control.

References

Šonka, M., Hlavá, V., Boyle, R. (1998): Image Processing, Analysis and Machine Vision. Boston: PWS

Šastný, J., Škorpil, V. (2003): Analysis of Methods for Edge Detection. International journal Communications 2003, ISSN 0018-2028, 19 pp.

Šastný, J., Škorpil, V. (2005): Neural Networks Learning Methods Comparison.

Downloads

Published

2023-01-10

How to Cite

Hayitov , O. S. (2023). METHODS AND ALGORITHMS FOR OBJECT RECOGNITION. GOLDEN BRAIN, 1(1), 142–144. Retrieved from https://researchedu.org/index.php/goldenbrain/article/view/1168