УДК 91.100.15 СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ ЗОЛО-ШЛАКОВЫХ СМЕСЕЙ

профессор А.И.Хамидов Наманганский инженерно-строительный институт, Узбекистан E-mail: adxamjon1954@gmail.com

Анномация. В статье рассмотрены вопросы использования золо-шлаковых смесей при производстве строительных материалов, приведены результаты исследований по определению физико-механических характеристик растворов, приготовленных из различных составов.

Abstract. The article deals with the use of ash-slag mixtures in the production of building materials, presents the results of studies to determine the physical and mechanical characteristics of solutions prepared from various compositions.

Ключевые слова. Бетон, вяжущее, цемент, золо-шлаковые смеси, пластифицирующие добавки, сульфитно-дрожжевая барда, супер-пластификаторы, наномодификаторы, наночастицы, прочность,

Keywords. Concrete, binder, cement, ash-slag mixtures, plasticizing additives, sulfite-yeast stillage, super-plasticizers, nanomodifiers, nanoparticles, strength.

Введение. Основная задача материаловедения — для эффективного использования бетона, совершенствование его состава и улучшения физико-механических свойств. Современные бетоны по сравнению с обычным, должны быть долговечными, при этом уменьшения расхода материалов без потери эксплуатационных свойств.

Среди промышленных отходов одно из первых мест по об'емам занимают золы и шлаки от сжигания твердых видов топлива (уголь разных видов, горючие сланцы, торф) на тепловых электрических станциях.

Золо-шлаковые отходы (ЗШО), отрицательно воздействуют на окружающею среду, их накопление приводит к загрязнению грунтовых вод и землянных ресурсов.

Необходимо отметить, что ЗШО не вывозятся с территории ТЭС, они соединяясь с оборотнами водами образуют гидропульпы.

Территории отведенные под ЗШО становятся непригодными для использования в сельском хозяйстве или для других целей, становятся зонами отчуждения.

Для создания зон отходов (золоотвалов) для золо-шлаковых примесей (ЗШП) в ТЭС, работающих на углях приведенные затраты, платежи на экологию, инвестиционные расходы составляют 5-7% от стоимости вырабатываемой электроэнергии.

В частности для создания новых золоотвалов расходы могут составит 2-4 миллиарда рублей, для строительства ограждающих дамб более 1 миллиарда рублей, и эти расходы оплчиваются потребителями энерги и тепла.

В связи с этим обеспечение экологической безопасности ТЭС – это утилизация ЗШП.

В большинстве развитых странах уделяется большое внимание использованию ЗШП для производства строительных материалов: в Германии и в Дании около 100%, в США, Великобритании, Польше и в Китае около 50-70%. Однако в странах СНГ только 8-10% ЗШП подвергается утилизации и используется при производстве строительных материалов.

На рынке товаров основные потребители ЗШО – строительная индустрия и промышленность строительных материалов. Использование ЗШП уменьшает

INNOVATIVE TECHNOLOGIES IN CONSTRUCTION 2023/1, PART 2

себестоимость строительных материалов (цемента, сухих строительных смесей, бетона, строительных растворов и др.) минимум на 15-30%.

Наибольший интерес вызывают технологии применения золо-шлаковых отходов в следующих производствах [1]:

- в производстве портландцемента (как активные кремнеземистые добавки) в количестве 10-15 процентов, в производстве пуццолановых портландцементов марок 300-400 до 30-40 процентов (золопортландцемент);
- при изготовлении строительных растворов как активная добавка в количестве 10-30 процентов от массы цемента, при использовании в строительных растворах портландцемента высоких марок (400-500) применение пылевидной золы может сократить его расход до 30 процентов;
- в качестве активного микронаполнителя в тяжелых бетонах, что позволяет снизить расход цемента от 6-10 процентов в бетонах нормального твердения до 12-25 процентов в пропариваемых;
 - в производстве силикатного кирпича;
- в жаростойких бетонах в качестве наполнителя вместо шамотного порошка, что существенно снижает себестоимость таких бетонов;
 - при изготовлении зольного и аглопоритового гравия;
- в производстве мелкозернистого аэрированного золобетона и изделий на его основе, в качестве мелкой фракции легких бетонов на пористых заполнителях плотной и поризованной структуры;
 - в качестве сырьевых материалов для дорожной промышленности;
- использование золо-шлаковых отходов с повышенным содержанием частиц несгоревшего топлива в производстве глиняного кирпича, что не только улучшает его качество, но и снижает расход технологического топлива на обжиг.

При производстве бетонных смесей и строительных растворов в качестве минеральной добавки, частично заменяющей цемент, а также для частичной или полной замены мелкого заполнителя могут использоваться зола-унос и золо-шлаковый материал. Наиболее эффективно применение золы-унос в бетонах низких классов (до B20), в частности в бетонах, применяемых для строительства плотин, фундаментов, оснований. Количество вводимой золы колеблется от 30 до 90 кг на 1 м³ бетонной смеси.

В последние годы проведены много исследований по использованию золы-уноса в производстве строительных материалов.

Введение в состав вяжущих, используемых для бетона, тонко измельчённой золыуноса — одно из перспективных и эффективных направлений уменьшения расхода цемента и решения экологической проблемы. В результате использования золы для бетона решаются основные задачи: экономия энерго-материальных ресурсов, утилизация промышленных отходов, улучшение экологических условий.

Химический состав золы близок составу клинкера цемента, в связи с чем, его с успехом можно использовать в качестве добавок при производстве цемента. В таблице-1 приведены примерный состав оксидов золы и клинкера цемента.

Таблица-1. Состав золы и клинкера цемента

Состав золы	В проценте, %	Состав клинкера цемента	В проценте, %
SiO_2	35 - 60	${ m SiO_2}$	19-24
Al_2O_3	15 – 35	Al_2O_3	4-8
Fe ₂ O ₃	20	Fe ₂ O ₃	2-6
CaO	30	CaO	63-68

Качество применяемой в бетонах и строительных растворах золы-унос должно соответствовать требованиям ГОСТ 25818–91 «Золо-шлакововые материалы».

ГОСТ 25818–91 распространяется на золу-унос, которая применяется в качестве компонента для изготовления тяжелых, легких, ячеистых бетонов и строительных

INNOVATIVE TECHNOLOGIES IN CONSTRUCTION 2023/1, PART 2

растворов, а также в качестве тонкомолотой добавки для жаростойких бетонов и минеральных вяжущих для приготовления смесей и грунтов в дорожном строительстве.

Для изготовления тяжелых и легких бетонов, строительных растворов золыунос применяют для снижения расхода цемента и заполнителей, улучшения технологических свойств бетонных и растворных смесей, повышения качества бетонов и растворов [2].

Проблемы. Недостаточный об'ём использования ЗШП об'ясняется слудующими их недостатками – повышенное содержание зол (до 53%), пористость (до 1600 м²/кг), повышенное водопотребнось, приводяшяя к снижению прочности строительных материалов и изделий на их основе.

Необходимо отметить, что совместный помол цементного клинкера и ЗШО приводит не только к уменьшению фракции цемента, но и к повышению их удельной поверхности, что увеличивает взаимодействие цементных частиц с водой. Однако, помол смесей снижает эффективность производства, а также использование ЗШО в бетонных смесях приводит к увеличению водопотребности, что приводит к снижению прочности бетонов

Исследования. На кафедре "Строительные материалы и изделия" Наманганского инженерно-строительного института проводятся научно-исследовательские работы для получения строительных материалов на основе золо-шлаковых примесей.

Для этих целей из различных компонентов приготовлены образцы размером 70х70х70 мм. В качестве добавок использован суперпластификатор Джалилова-СДж-3 [4]. Водоцементное отношение прниято 0,5. В качестве эталона использован портландцемент марки 400 (без добавок). После 28-суточного твердения в нормальных условиях, образцы испытаны в лабораторных условиях для определения физикомеханических характеристик. В исследованиях использованы результаты научных работ В.С.Прокопеца [5].

В таблице 2 приведены результаты исследований по определению физикомеханических характеристик растворов, приготовленных из различных составов.

Таблица – 2. Физико-меха	анических х	арактеристики	образцов
Содержание компонентов		D	Предел прочности после

№ остава	Содержание компонентов в вяжущем, %			%		Время	Предел прочности после 28- суточного твердения, МПа	
	Цемент (М400)	Зола	Шлак	Добавки	Плотность, г/см ³	схватывания, начало- конец, мин час.	При сжатии	Растяжении при изгибе
1	100	-	-		3,1	45 - 10	40,2	6,2
2	70	30	-		3,2	50 - 11	34,8	3,2
3	27	40	30	3	3,04	52 - 11	39,5	6,4
4	36	40	20	4	3,05	53 - 13	40,7	6,5
5	47	29	19	5	3,07	55 - 14	41,5	6,6

Из таблицы видно, что при добавлении в состав растворной смеси только золы (2 состав) уменьшает его прочность.

При добавлении в состав растворной смеси (5-состав) золы, шлака и добавок - суперпластификатор Джалилова-СДж-3 показатели образцов выше (по сравнению с 1 составом).

Перспективные направления снижения водопортребности смесей - это использовние пластифицирующих добавок и наномодификаторов (углеродные астралены, фуллероны и нанотрубки, оксиды металлов, известь, наночастицы и др.).

INNOVATIVE TECHNOLOGIES IN CONSTRUCTION 2023/1, PART 2

Введение в состав бетона пластифицирующих добавок и наномодификаторов улучшает их физико-механические характеристики, повышает прочность и величину модуля упругости, водонепроницаемость, и морозостойкость, снижает значения предельной деформации усадки [6].

Применеие наномодификаторов для улучшения свойств бетонов на основе золошлаковых смесей открывает широкие возможности целенаправленного управления экономическими, технологическими и физико-механическими свойствами бетонов.

Выводы. Использование золо-шлаковых примесей (ЗШП) при производстве строительных материалов в настоящее время является весьма актуальной как с экономической так и с экологической точки зрения. Цементные растворы на золошлаковых отходах имеют достаточную прочность и могут быть исполльзованы для приготовления бетонов.

Комплексный подход к переработке золо-шлаковых отходов способен дать большой экономический эффект. Для этого необходимо разработать промышленные технологии использования золо-шлаковых отходов, а также выработать комплекс маркетинговых мероприятий по продвижению продукции на основе ЗШО. Необходимо всестороннее изучение рынка строительных материалов (производителей, их возможности и желание использовать золо - шлаковые отходы в своем производстве), а также поиск и налаживание контактов с потенциальными потребителями нового продукта.

Литература:

А.Бернацкий, Н.Машкин. Золошлаковые отходы: опыт и перспективы использования. Новосибирский архитектурно-строительный университет. \Газета "Энергетика и промышленность России" \№ 10 (102) май 2008 года \Энергетика.

- 1. Copyright © 2012 OOO ЭнергоЗолоРесурс.
- 2. ГОСТ 24211-03 «Добавки для бетонов и строительных растворов. Общие технические условия»
- 3. Samigov N.A, Karimov M.U, Mazhidov S.R, Mirzaev B.K. Physico-chemical structure of expanded clay concrete properties with complex chemical additive KDj-3 of the "relaxol" series//International Journal.
- 4. В.С.Прокопец. Использование золо-шлаковых отходов для бетонов. // Вестн. СибАДИ. 2008. Вып.7. 22-30 с.
- 5. А.Хамидов, Б.Шаропов, М.Мухторалиева. Определение свойств бетона на основе золо-шлаковых отходов. Материалы международной конференции "Инновации в строительстве, энергосберегающие технологии и сейсмическая безопасность конструкций сооружений", Наманган, 7-8 ноября 2019.— 188-190 с.