УДК 624.131(175)

ЧИСЛЕННЫЕ РАСЧЕТЫ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ОСНОВАНИЯ ЗДАНИЯ ГОРОДА НУКУСА

DSc. Аимбетов Иззет Каллыевич1, доцент Бекимбетов Руслан Турсинбаевич2 Каракалпакский научно-исследовательский институт естественных наук, заведующий лабораторией1, Каракалпакский государственный университет2, Узбекистан E-mail: izzetchf@mail.ru, r.bekimbetov@mail.ru

Аннотация: Представлены результаты численных расчетов напряженно-деформированного состояния массива грунтов под фундаментом здания города Нукуса методом Численные расчеты ленточных фундаментов показали, что с ростом ширины фундамента происходит увеличение осадок, что связано с ростом глубины активной зоны грунтового массива под фундаментом. Анализ результатов расчетов показал, что наиболее экономичным типом фундамента для исследованного участка строительства является ленточный фундамент шириной м.

Ключевые слова: Осадка, фундамент, массив грунта, plaxis

1. **Введение:** Из-за мало изученности физико-механических свойств засоленных грунтов города Нукуса часто фундаменты зданий проектируются с большим запасом. В последние годы в г. Нукусе осуществляется строительство многоэтажных жилых зданий. При проектировании зданий в основном принимаются ленточные фундаменты. В некоторых случаях из-за мало изученности инженерно-геологических условий г. Нукуса часто волевым решением принимается плитный фундамент.

2. Цель и методы исследования

Целью настоящей работы являлось сравнение результатов натурных наблюдений осадок плитного фундамента с результатами расчетов методом конечных элементов (МКЭ) с использованием геотехнического комплекса «PLAXIS 3D Foundation».

Исследования были проведены на примере строительства пятиэтажного жилого дома, строящегося в г. Нукусе, который находится на перекрестке ул. Е.Алакоз и М.Авезова г. Нукуса. Высота здания 18,0 м. площадь в плане 768м², стены кирпичные, на уровне перекрытий и покрытия предусмотрены сплошные антисейсмические пояса. Глубина заложения фундамента - м. Тип фундамента – плитный, высотой 0,4м.

Инженерно-геологическое обследование показало, что в пределах разведенных глубин (до 10м) грунты опытной площадки были представлены глинистыми и песчаными грунтами, представленными лессовидными суглинками и песками.

Для проведения совместных расчетов плитного фундамента и основания был выбран расчетный комплекс «PLAXIS 3D Foundation», представляющий собой пакет прикладных геотехнических программ для конечно-элементного анализа напряженного состояния системы «основание-фундамент». При решении задач МКЭ сплошная область рассматривается совокупность конечного числа элементов. В данной работе при формировании расчетной схемы использовались 6-узловые элементы и 16-узловые интерфейсные элементы для моделирования соответственно работы конструкции и взаимодействия грунта с конструкцией.

При численных расчетах были использованы физико-механические свойства грунтов и материала фундамента, которые представлены ниже.

Таблица №1 Физико-механические характеристики грунтов

Наименование характеристики	Ед. изм.	Суглинок	Песок
Плотность грунта	т/м3	1	1,94
Коэффициент пористости	б/р	0,786	0,750
Влажность природная	д.е.		

INNOVATIVE TECHNOLOGIES IN CONSTRUCTION 2023/1, PART 1

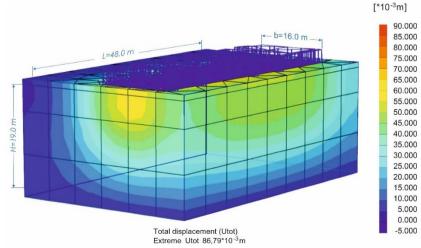
Влажность на пределе текучести	д.е.		
Влажность на пределе раскатывания	д.е.		
Число пластичности	д.е.	0,126	
Показатель текучести	б/р	0,48	
Удельное сцепление при водонасыщении	кПа	,	,0
Угол внутреннего трения	град.	2	
Модуль деформации: при водонасыщении	МПа	8,6	9,5

Таблица 2. Физико-механические свойства материала плиты

Характеристика (Обозначение)	Ед. измер.	Величина
Модуль упругости (E_{ref})	кH/м ²	29000000
коэффициент Пуассона (v)	_	0.2
Плотность материала (c_{sat})	кH/м ³	24,0
Эквивалентная толщина (d)	M	0,4

В качестве объемных сил задавались собственный вес плиты и грунта основания. Внешняя сила - Р прикладывалась в виде равномерно-распределенной нагрузки. Для каждой ступени нагружения фундамента рассчитывались осадки и напряжения массива грунтов.

В целях оценки корректности результатов численных расчетов были проведены натурные наблюдения за осадками здания в процессе его строительства. Для этого в фундамент здания были установлены репера для наблюдения за осадками в процессе его возведения. В процессе возведения здания при помощи нивелира было осуществлено наблюдение за осадками зданий, которые показали, что осадка здания проходила равномерно по всем трем реперам.


3. Результаты численных расчетов осадок и их сопоставление с натурными наблюдениями

Результаты численных расчетов осадок здания были сопоставлены с результатами натурных наблюдений.

Наряду с расчетом плитного типа фундамента были проведены расчеты ленточного типа фундамента различной ширины: b = 1,2; 1,4 и 1,6 м. Анализ результатов расчетов осадок ленточных фундаментов показал, что с увеличением ширины фундамента наблюдается увеличение осадки фундамента. При этом для всех размеров ленточных фундаментов осадки меньше чем осадки плитного фундамента. Это связано с тем, что с увеличением размера фундамента происходит рост интенсивности осадок по глубине. Для подтверждения этого приведем результаты расчетов осадок массива грунта под фундаментами.

На рисунке 1 представлены результаты расчетов осадок массива грунтов под плитным фундаментом, анализ которого показывает, что под действием фундамента осадки не затухают до глубины 19 метров.

В целях оценки корректности применения ленточного фундамента были проведены численные расчеты для фундаментов шириной 1,2; 1,4; и 1,6 м. При расчетах были приняты

значения вертикальных давлений подошвой фундамента, которые возникают при действии веса вышележащих конструкций здания. При этом с ростом ширины ленточного фундамента увеличивается осадка фундамента. Это связано ростом глубины затухания осадок по глубине.

Рис. 1. Изменение общих осадок грунта по глубине под плитным

INNOVATIVE TECHNOLOGIES IN CONSTRUCTION 2023/1, PART

фундаментом. $P=7,1кн/м^2$

Аналогичные результаты были получены в экспериментальных исследованиях осадки при различных размерах площади загрузки грунтового массива. Так, например, в опытах Х.Р. Хакимова и Д.Е Польшина установлено, что с ростом площади загрузки, при одинаковом значении напряжений наблюдается увеличение вертикальных осадок. Это связано с ростом активной зоны грунтового массива при увеличении площади нагружения [3].

В таблице №3 представлены результаты расчетов осадок различных типов фундаментов для проектируемого здания в г. Нукусе, анализ которой показывает, что наиболее экономичным типом фундамента является ленточный фундамент шириной 1,2 м.

Таблица 3. Осадки фундаментов различных типов и размеров

Тип и размеры фундамента	Давление под подошвой фундамента, kн/м ²	U _{total} 10 ⁻³ M	U _у 10 ⁻³ м	U _x 10 ⁻³ м
Плитный фундамент 16 x 48 m	фундамента, кн/м	86,79	86,26	
Ленточный фундамент b=1,2 m	,5	64,81	57,47	34,20
Ленточный фундамент b=1,4 m	16,72	60,41	54,60	29,65
Ленточный фундамент b=1,6 m	14,63	62,42	54,56	34,53

Выводы

- 1. Сравнительный анализ численных расчетов и натурных наблюдений осадок фундамента здания города Нукус показал согласуемость натурных наблюдений с результатами численных расчетов, выполненных при помощи программы PLAXIS.
- 2. Результаты численных расчетов ленточных фундаментов различной ширины показал, что с ростом ширины фундамента увеличивается осадка. Это связано с ростом глубины затухания осадок по глубине с увелечением ширины фундамента.
- 3. Сравнение результатов численных расчетов осадок плитного фундамента пятиэтажного дома показал, что по сравнению с плитным фундамендом осадки ленточных фундаментов значительно меньше, что связано с глубиной активной зоны грунтового массива под фундаментом.
- 4. Результаты исследований показали, что принятый плитный вариант фундамента допускает перерасход строительных материалов при изготовлении фундамента. Наиболее экономичным фундаментом для проектируемого здания достаточно принять фундамент шириной м.

Список литературы

- 1. Аимбетов И.К. Инженерно-геологические основы строительства зданий и сооружений на засоленных грунтах Каракалпакстана. сооружений на засоленных грунтах Каракалпакстана сооружений на засоленных грунтах Каракалпакстана. Монография. Нукус, «Илим» 2020 288 с.
- 2. Aimbetov I.K., Bekimbetov R.T. The investigation of Foundation Displacements of Nukus City (Uzbekistan) buildings. International of Science and Research (IJSR), Volume 9 Issue 7, July 2020, -p.504-507.
 - 3. Цытович Н.А. Механика грунтов. М: Стройиздат, 1983. 288 с.
- 4. Angeli M., Bigas J.P., Benavente D., Menéndez B., Hébert R., David C. Salt crystallization in pores: quantification and estimation of damage // Environmental geology. 2007. № 52. P. 205-213.
- 5. Benavente D., Cueto N., Martínez-Martínez J., Del Cura M.G., Cañaveras J. The influence of petrophysical properties on the salt weathering of porous building rocks // Environmental geology. 2007. № 52. P. 215-224.
- 6. Benavente D., Garcia del Cura M.A., Garcia-Guinea J., Sanchez-Morald S., Ordonez S. Role of pore structure in salt crystallisation in unsaturated porous stone // Journal Crystal Growth 2004. №260 (3-4). P. 532-544.