A NONLOCAL PROBLEM WITH BITSADZE-SAMARSKII CONDITIONS ON CHARACTERISTICS OF A DIFFERENT FAMILY FOR A PARABOLIC-HYPERBOLIC EQUATION

Vafoev S.S

Nurafshon branch of Tashkent university of information technologies named after Muhammad al-Khwarizmi

Abstract. In this paper, we study the second-order differential invariants of submersions with respect to the group of conformal transformations Euclidian spaces. In particular, it is proved that the ratio of principal surface curvatures is a secondorder differential invariant with respect to the group of conformal transformations.

Keywords: Conformal transformation, differential invariants, submersion, vector field.

MSC (2010): 53C12, 57R25, 57R35

1 Statement of the problem

We consider the equation (1.1) $0 = Lu \equiv \begin{cases} u_{xx} - u_y, (x, y) \in D_1, \\ u_{xx} - u_{yy}, (x, y) \in D_2 \cup D_3 \end{cases}$

where D_1 is one connected domain bounded by the segments AB , BB_0 , B_0A_0 , A_0A on the lines $y = 0$, $x = 1$, $y = h$, $x = 0$, respectively; D_2 is a characteristic triangle bounded by the segment *AB* of axis *Ox* and with the characteristics AC_1 : $x + y = 0$, *BC*₂ : $x - y = 1$ of equation (1) issuing from the points *A*(0*,*0) and *B*(1*,*0), intersecting at a point $C_1(\frac{1}{2}; -\frac{1}{2})$; D_3 is the characteristic triangle also, bounded by the segment AA_0 of axis *Oy* and with two characteristics AC_2 : $x + y = 0$, A_0C_2 : $y - x = 1$ of equation (1.1) issuing from the points $A(0,0)$ and $A_0(0,h)$, intersecting at a point $C_2\left(-\frac{1}{2}; \frac{1}{2}\right)$.

,

We introduce the notations: $J \equiv AB = \{(x,y): 0 < x < 1, y = 0\}$,

$$
I \equiv AA_0 = \{(x, y) : x = 0, 0 < y < h\}, D_1 = D^{\backslash}\{x > 0, y > 0\},
$$
\n
$$
D_2 = D^{\backslash}\{x > 0, y < 0\}, D_3 = D^{\backslash}\{x < 0, y > 0\}, D = D_1^{\backslash}\{D_2^{\backslash}\{D_3^{\backslash}\}J^{\backslash}\{I\}, I_1 = \{(x, y) : x = 0, 0\}
$$
\n
$$
\{y < k_2\}, I_2 = \{(x, y) : x = 0, k_2 < y < 1\}, k_2 \in I,
$$

$$
J_1 = \{(x,y): 0 < x < k_1, y = 0\}, J_2 = \{(x,y): k_1 < x < 1, y = 0\}, k_1 \in J.
$$

Let $P_1(P_2)$ and $Q_1(Q_2)$ denote, respectively, the points of intersection of the characteristics $AC_1(AC_2)$ and $BC_1(DC_2)$ with characteristics coming from points $E_1(k_1, k_2)$ 0) ∈ $J(E_2(0, k_2) \in I)$,

$$
\theta_1(x) = (x/2 \; ; \; -x/2 \;) \, , \theta_1^*(x) = ((x+k_1)/2 \; ; \; (k_1 - x)/2 \;) \qquad (1.2)
$$
\n
$$
\theta_2(y) = (-y/2 \; ; \; y/2 \;) \, , \theta_2^*(y) = ((k_2 - y)/2 \; ; \; (k_2 + y)/2 \;) \qquad (1.3)
$$

 $\theta_1(x)(\theta_2(y))$ is the point of intersection of the characteristic $AC_1(AC_2)$ with a characteristic emerging from a point $M_1(x,0)$ $(\tilde{M}_1(0,y))$

 $(x,0) \in J_1((0,y) \in I_1), \theta_1^*(x) (\theta_2^*(y))$ is the point of intersection of a $E_1 Q_1 (E_2 Q_2)$ characteristicwith a characteristic emerging from a point *M*₂(*x*,0) *M*^{$>$}₂(0*,y*)(*x*,0) ∈ *J*₂((0*,y*) ∈ *I*₂).

The present paper is devoted to the investigation of the problem with Bitsadze-Samarskii conditions (see [1]) on characteristics AP *j* and characteristics AC *j*, E _{*j*} Q _{*j*} (*j* = 1*,*2) as one family.

BS-Problem. To find a function $u(x, y)$ in the domain D with the following properties:

1) $u(x, y) \in C(D^{-})$;

2) *u*(*x,y*) ∈ *Cx,y*2*,*1 (*D*1 S *AB* S *A*0*B*0)T*Cx,y*2*,*2 (*Dj*\(*EjPj* S*EjQj*)), satisfies equation (1) in the domains D_1 and $D_j \setminus (E_j P_j{}^S E_j Q_j)$, (*j* = 2,3);

3) $u_y \in C(D_1^S J_1^S J_2)^T C(D_2^S J_1^S J_2)$ and on the intervals

 J_i $(j = 1, 2)$ takes place gluing condition:

 $\lim_{y \to -0} u_y(x, y) = \lim_{y \to +0} u_y(x, y), (x, 0) \in J_1 \bigcup J_2$ (1.4)

5) *u*(*x,y*) satisfies the boundary

conditions

$$
u|_{x=1} = \phi_1(y), 0 \le y \le h,\tag{1.5}
$$

$$
a_1(x)u[\theta_1(x)] + b_1(x)u(x,0) = c_1(x), (x,0)
$$

\n
$$
\in J_1,
$$
\n(1.6)

$$
a_2(y)u[\theta_2(y)] + b_2(y)u(0,y) = c_2(y), (0,y)
$$

\n
$$
\in I_1,
$$
\n(1.7)

of a different family for a parabolic-hyperbolic equation 3

$$
u [\theta_1 (x)] = \mu_1 u [\theta_1^*(x)] + \delta_1(x), \quad (x, 0) \in \bar{J}_2
$$
(1.8)

$$
u [\theta_2 (y)] = \mu_2 u [\theta_2^*(y)] + \delta_2(y), \quad (0, y) \in \bar{I}_2
$$
(1.9)

where
$$
\phi_1(y)
$$
, $\delta_j(t)$, $a_j(t)$, $b_j(t)$, $c_j(t)$ ($j = 1, 2$) are given functions, and
\n $\mu_j 6=1, c_j(k_j) = a_j(k_j)\delta_j(k_j)(j = 1, 2), c_1(0) = c_2(0) = 0, (1.10)$
\n $a^2_j(t) + b^2_j(t)$ $6=0, a_j(t) + 2b_j(t) > 0, \forall t \in [0, k_j], (1.11)$
\n $\phi_1(y) \in C [0, h] \setminus C^{-1}(0, h), \delta_1(x) \in C^{-1}(J_2) \setminus C^3(J_2), \delta_2(y) \in C^{-1}(J_2) \setminus C^3(I_2),$ \n(1.12)

 $a_j(t)$, $b_j(t)$, $c_j(t)$, $\in C$ $[0, k_j]$ ^{$\setminus C^2$} $(0, k_j)$, $(j = 1, 2)$. (1.13)

Notice, that

- Conditions (1.6) and (1.7) are Bitsadze - Samarskii conditions on the characteristics*APj*.

- Conditions (1.8) and (1.9) are mixing condition, where the non-local condition point wise links the values of the desired solution to the parallel characteristics *ACj* and E_iQ_i (*j* = 1,2).

Well known, that the analogs of the Tricomi problem for equation (1) have been studied in [3] - [5]. The *BS*-problem for equation (1.1) has not previously been investigated.

2 **The main functional relations**

In the study of the BS-problem, an important role is played functional relations between $v_1(x)(v_2(y))$ and $\tau_1(x)(\tau_2(y))$ from the parabolic and hyperbolic parts of the domain *D*, where

$$
u(x,0) = \tau_1(x), \quad (x,0) \in \bar{J}, \lim_{y \to 0} u_y(x,y) = \nu_1(x), \ (x,0) \in J, \quad (2.1)
$$

 $u(0, y) = \tau_2(y),$ $(0, y) \in \overline{I}$, $\lim_{x \to 0} u_x(x, y) = \nu_2(y),$ $(0, y) \in I$. (2.2)

As we know [6], the solution of the Cauchy problem with initial conditions (2.1) for equation (1.1) in the domain D_2 has the form:

$$
u(x,y) = \frac{1}{2} \left[\tau_1 \left(x + y \right) + \tau_1 \left(x - y \right) \right] + \frac{1}{2} \int_{x-y}^{x+y} \nu_1 \left(t \right) dt. \tag{2.3}
$$

By (1.2) from (2.3) we obtain

$$
u\left[\theta_{1}\left(x\right)\right] = u\left[\frac{x}{2}, -\frac{x}{2}\right] = \frac{1}{2}\left[\tau_{1}(0) + \tau_{1}(x)\right] + \frac{1}{2}\int_{x}^{0} \nu_{1}(t)dt,
$$
\n
$$
u\left[\theta_{1}^{*}\left(x\right)\right] = u\left[\frac{x+k_{1}}{2}, \frac{k_{1}-x}{2}\right] = \frac{1}{2}\left[\tau_{1}(k_{1}) + \tau_{1}(x)\right] + \frac{1}{2}\int_{x}^{k_{1}} \nu_{1}(t)dt.
$$
\n
$$
(2.4)
$$

By (1.10), (2.1), (2.2) from (1.6), (1.7), (1.8) and (1.9) it follows that

$$
\tau_1(0) = \tau_2(0) = 0, \tau(k_1) = \tau(k_2) = 0. \tag{2.6}
$$

Substituting (2.4) , (2.5) into (1.6) and (1.8) , taking (2.1) and (2.6) into account, respectively, we have

$$
[a_1(x) + 2b_1(x)]\,\tau_1(x) - \int_0^x \nu_1(t)dt = 2c_1(x), \quad (x,0) \in \bar{J}_1
$$
\n
$$
\tag{2.7}
$$

and

$$
\begin{array}{ccc}\n0 & & & k_1 \\
Z & & Z\n\end{array}
$$

$$
(1 - \mu_1)\tau_1(x) + \nu_1(t)dt = \mu_1\nu_1(t)dt + 2\delta_1(x), (x, 0) \in \bar{J}_2. (2.8)
$$

$$
x \qquad x
$$

of a different family for a parabolic-hyperbolic equation 5

Differentiating (2.7) and (2.8) with *x* respect to μ_1 6= 1, respectively, we obtain the functional relation between $\tau_1(x)$ and $v_1(x)$, brought from the domain D_2 on the J_1 and J_2 , which have the forms

$$
\nu_1(x) - d_1(x)\tau_1'(x) - d_1'(x)\tau_1(x) = -2c_1'(x), (x, 0) \in J_1 \qquad (2.9)
$$

and

$$
v_1(x) - \tau_1^0(x) = -2^{\delta 0} (x)/(1 - (x, 0)) \in (2.10)
$$

$$
\mu_1), J_2,
$$

where $d_1(x) = a_1(x) + 2b_1(x)$.

Similarly, using the solution

$$
u(x; y) = \frac{1}{2} \left[\tau_2 (x + y) + \tau_2 (y - x) \right] - \frac{1}{2} \int_{x+y}^{y-x} \nu_2(t) dt
$$
 (2.11)

of the Cauchy problems (see [6] and [7]) with the initial date (2.2) for equation (1.1) in the domain considering (2.10) , (1.7) and (1.9) we obtain the functional relation between $\tau_2(y)$ and $v_2(y)$, brought from the domain D_3 on the I_1 and I_2 :

$$
\nu_2(y) - d_2(y)\tau'_2(y) - d'_2(y)\tau_2(y) = -2c'_2(y), (0, y) \in I_1 \qquad (2.12)
$$

and

$$
\nu_2(y) - \tau_2'(y) = -2\delta'_2(y)/(1 - \mu_2), \quad (0, y) \in I_2 \tag{2.13}
$$

respectively, where $d_2(y) = a_2(y) + 2b_2(y)$.

According to the conditions of the BS-problem, passing to the limit as $y \rightarrow +0$ in equation (1.1), we obtain the functional relation between $\tau_1(x)$ and $v_1(x)$, brought from the domain D_1 on J :

$$
\tau^{00}(x) = v_1(x), \ (x,0) \in J. \tag{2.14}
$$

Solution of the first boundary value problem with conditions $u(x, +0) = \tau_1(x)$, $(x,0) \in J$, $\overline{u}(+0,y) = \tau_2(y)$, $(0,y) \in \overline{I}$ and (1.5) for equation (1.1) in domain D_1 has the form [8], [9]:

$$
u(x,y) = \int_{0}^{y} G_{\xi}(x,y;0,\eta) \tau_{2}(\eta) d\eta + \int_{0}^{y} G_{\xi}(x,y;1,\eta) \varphi_{1}(\eta) d\eta +
$$

1
Z

$$
+ G(x, y; \xi, 0)\tau_1(\xi)d\xi, \qquad (2.15)
$$

0

where

$$
G(x, y; \xi, \eta) = \frac{1}{2\sqrt{\pi(y-\eta)}} \sum_{n=-\infty}^{+\infty} \left\{ e^{-\frac{(x-\xi+2n)^2}{4(y-\eta)}} - e^{-\frac{(x+\xi+2n)^2}{4(y-\eta)}} \right\}
$$
 is

Green's function of the first boundary value problem for the equation $u_{xx} - u_y =$

0.

Differentiating (2.15) with respect to *x*, we obtain

$$
yy Z Z Z
$$

\n
$$
u_x(x,y) = G_{\xi x}(x,y; 0,\eta)\tau_2(\eta)d\eta + G_{\xi x}(x,y; 1,\eta)\tau_3(\eta)d\eta + 0
$$

\n0 0
\n1
\nZ
\n+ $G_x(x,y; \xi, 0)\tau_1(\xi)d\xi,$ (2.16)

0

where

$$
G_{\xi x}(x, y; 0, \eta) = \frac{1}{2\sqrt{\pi (y - \eta)}} \sum_{n = -\infty}^{+\infty} \left[\frac{1}{y - \eta} - \frac{(x + 2n)^2}{2(y - \eta)^2} \right] e^{-\frac{(x + 2n)^2}{4(y - \eta)}} =
$$

\n
$$
= \frac{d}{d\eta} \left[\frac{1}{\sqrt{\pi (y - \eta)}} e^{\frac{x^2}{4(y - \eta)}} + \frac{1}{\sqrt{\pi (y - \eta)}} \sum_{n = -\infty}^{+\infty} e^{-\frac{(x + 2n)^2}{4(y - \eta)^2}} \right], \quad (2.17)
$$

\n
$$
G_{\xi x}(x, y; 1, \eta) = \frac{1}{2\sqrt{\pi (y - \eta)}} \sum_{n = -\infty}^{+\infty} \left\{ \left(\frac{1}{2(y - \eta)} - \frac{(x - 1 + 2n)^2}{4(y - \eta)^2} \right) e^{-\frac{(x - 1 + 2n)^2}{4(y - \eta)}} + \left(\frac{1}{2(y - \eta)} - \frac{(x + 1 + 2n)^2}{4(y - \eta)^2} \right) e^{-\frac{(x + 1 + 2n)^2}{4(y - \eta)^2}} \right\} =
$$

\nof a different family for a parabolic-hyperbolic equation

$$
= \frac{d}{d\eta} \left[\frac{1}{2\sqrt{\pi (y-\eta)}} e^{-\frac{(x-1)^2}{4(y-\eta)}} + \frac{1}{2\sqrt{\pi (y-\eta)}} \sum_{n=-\infty}^{+\infty} e^{-\frac{(x-1+2n)^2}{4(y-\eta)}} \right] +
$$

+
$$
\frac{d}{d\eta} \left[\frac{1}{2\sqrt{\pi (y-\eta)}} e^{-\frac{(x+1)^2}{4(y-\eta)}} + \frac{1}{2\sqrt{\pi (y-\eta)}} \sum_{n=-\infty}^{+\infty} e^{-\frac{(x+1+2n)^2}{4(y-\eta)}} \right], (2.18)
$$

$$
G_x(x, y; \xi, 0) = \frac{1}{2\sqrt{\pi y}} \sum_{n=-\infty}^{+\infty} e^{-\frac{(x+2n)^2+\xi^2}{4y}} \left[\frac{\xi}{y} ch2\xi(x+2n) - \frac{x+n}{y} sh2\xi(x+2n) \right]
$$

(2.19)

Using the formula (2.16) and making integration by parts, taking into account (2.17), (2.18) and (2.6), owing to $\lim_{z \to 0} z^{-\sigma} e^{-1/z} = 0$, $(\sigma > 0)$, we have

$$
u_x(x,y) = -\frac{1}{\sqrt{\pi}} \int_0^y \frac{\tau_2'(y)}{\sqrt{y-y}} e^{-\frac{x^2}{4(y-\eta)}} d\eta - \frac{1}{\sqrt{\pi}} \int_0^y \frac{\tau_2'(y)}{\sqrt{y-\eta}} \sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} e^{-\frac{(x+2n)^2}{4(y-\eta)}} d\eta +
$$

$$
+\frac{1}{2\sqrt{\pi}}\int_{0}^{y}\frac{\varphi'_{1}(\eta)}{\sqrt{y-\eta}}e^{-\frac{(x-1)^{2}}{4(y-\eta)}}d\eta+\frac{1}{2\sqrt{\pi}}\int_{0}^{y}\frac{\varphi'_{1}(\eta)}{\sqrt{y-\eta}}\sum_{n=-\infty}^{+\infty}e^{-\frac{(x-1+2n)^{2}}{4(y-\eta)}}d\eta++\frac{1}{2\sqrt{\pi}}\int_{0}^{y}\frac{\varphi'_{1}(\eta)}{\sqrt{y-\eta}}e^{-\frac{(x+1)^{2}}{4(y-\eta)}}d\eta+\frac{1}{2\sqrt{\pi}}\int_{0}^{y}\frac{\varphi'_{1}(\eta)}{\sqrt{y-\eta}}\sum_{n=-\infty}^{+\infty}e^{-\frac{(x+1+2n)^{2}}{4(y-\eta)}}d\eta++\frac{1}{2\sqrt{\pi y}}\int_{0}^{1}\sum_{n=-\infty}^{+\infty}e^{-\frac{(x+2n)^{2}+\xi^{2}}{4y}}\left[\frac{\xi}{y}ch2\xi(x+2n)-\frac{x+n}{y}sh2\xi(x+2n)\right]\tau_{1}(\xi)d\xi.
$$
\n(2.20)

According to the conditions of the problem, passing to the limit as $x \to +0$ in (2.20) considering (4) , (2.2) and the identities:

$$
\sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} e^{-\frac{(2n-1)^2}{4(y-\eta)}} = \sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} e^{-\frac{(2n+1)^2}{4(y-\eta)}} = e^{-\frac{1}{4(y-\eta)}} + 2 \sum_{n=1}^{+\infty} e^{-\frac{(2n+1)^2}{4(y-\eta)}}
$$
\n
$$
\sum_{\substack{n=-\infty\\n\neq 0}}^{+\infty} e^{-\frac{(2n)^2}{4(y-\eta)}} = 2 \sum_{n=1}^{+\infty} e^{-\frac{n^2}{y-\eta}}
$$

we obtain the functional relation between $\tau_2(y)$ and $v_2(y)$, brought from the domain D_1 by I :

$$
\nu_2(y) = -\frac{1}{\sqrt{\pi}} \int_0^y \frac{\tau_2'(\eta)}{\sqrt{y-\eta}} d\eta - \frac{1}{\sqrt{\pi}} \int_0^y \frac{K_1(y,\eta)}{\sqrt{y-\eta}} \tau_2'(\eta) d\eta + F_1(y,\varphi_1',\tau_1),
$$
\n(2.21)

where

$$
K_{1}(y, \eta) = 2 \sum_{n=1}^{+\infty} e^{-\frac{n^{2}}{y-\eta}} , \qquad (2.22)
$$
\n
$$
F_{1}(y, \varphi'_{1}, \tau_{1}) = \frac{2}{\sqrt{\pi}} \int_{0}^{y} \frac{\varphi'_{1}(\eta)}{\sqrt{y-\eta}} e^{-\frac{1}{4(y-\eta)}} d\eta + \frac{2}{\sqrt{\pi}} \int_{0}^{y} \frac{\varphi'_{1}(\eta)}{\sqrt{y-\eta}} \sum_{n=1}^{+\infty} e^{-\frac{(1+2n)^{2}}{4(y-\eta)}} d\eta + \frac{1}{2\sqrt{\pi y}} \int_{0}^{1} \sum_{n=-\infty}^{+\infty} e^{-\frac{4n^{2}+t^{2}}{4y}} \left[\frac{t}{y} ch 4t n - \frac{n}{y} sh 4t n \right] \tau_{1}(t) dt.
$$
\n(2.23)

3 **Investigation of the BS-problem**

The following theorem is proved.

Theorem 3.1. *If conditions (1.10) - (1.12) are satisfied, then in the domain D there exists a unique regular solution of the BS-problem.*

Proof. Excluding $v_1(x)$ from the relations (2.9) , (2.10) , (2.14) owing to the gluing condition (1.4) and conditions (1.5), (1.6), (1.8), $u|_{x=0} = \tau_2(y)$ considering also (1.10) , (2.1) , (2.6) we obtain following problems:

$$
\tau_1''(x) - d_1(x)\tau_1'(x) - d_1'(x)\tau_1(x) = -2c_1'(x), (x, 0) \in J_1,
$$
(3.1)

$$
\tau_1(0) \equiv \tau_2(0) = \tau_1(k_1) = 0
$$
(3.2)
and $\phi_3(0) = 0$,

$$
\tau_1''(x) - \tau_1'(x) = -\frac{2}{1 - \mu_1}\delta_1'(x), \quad (x, 0) \in J_2,
$$
(3.3)

$$
\tau_1 \qquad \tau_1(1) = \phi_1(0). \qquad (3.4)
$$

$$
(k_1) = 0,
$$

The solution of (3.1) satisfying the first conditions (3.2) can be an equivalent way reduced in to the Volterra integral equation of the second kind with respect to $\tau_1'(x)$:

$$
\tau_1'(x) - \int_0^x M_1(x, t) \tau_1'(t) dt = \Phi_1(x), \quad (x, 0) \in \bar{J}_1
$$
\n(3.5)

where

$$
x Z
$$

\n
$$
M_1(x,t) = d_1(t) + d_1(z) dz, \Phi_1(x) = -2c_1(x) + \tau^0(0).
$$

\n
$$
t
$$

From this, by virtue of (1.12), we conclude that

$$
\Phi_1(x) \in C[0, k_1] \setminus C^2(0, k_1), M_1(x, t) \in C([0, k_1] \times [0, k_1]). \tag{3.6}
$$

According to the theory of Volterra type integral equations of the second kind, we conclude that the integral equation (3.5) is uniquely solvable in the class C [0*,k*₁] $\bigcap C^2(0,k_1)$ and its solution is given by the formula

$$
\tau_1'(x) = \Phi_1(x) + \int_0^x \tilde{M}_1(x, t) \Phi_1(t) dt, \quad (x, 0) \in \bar{J}_1
$$
\n(3.7)

where $\tilde{M_1}(x,t)$ is resolvent- kernel of $M_1(x,t)$.

Integrating (3.7) from 0 to *x* considering $\tau_1(0) = 0$, we have

$$
\tau_1(x) = \int_0^x \Phi_1(t)dt + \int_0^x dt \int_0^t \tilde{M}_1(t, z)\Phi_1(z)dz, \qquad (x, 0) \in \bar{J}_1, (3.8)
$$

Based on (3.6), from (3.8) we conclude that

$$
\tau_1(x) \in C^1(\bar{J}_1) \bigcap C^2(J_1). \tag{3.9}
$$

Now, putting in (3.8) $x = k_1$ owing to $\tau_1(k_1) = 0$ and the form of the function $\Phi_1(x)$, we find an unknown constant $\tau^0(0)$:

$$
\tau'_{1}(0) = \frac{2\left[\int_{0}^{k_{1}} c_{1}(t)dt + \int_{0}^{k_{1}} dt \int_{0}^{t} \tilde{M}_{1}(t, z)c_{1}(z) dz\right]}{k_{1} + \int_{0}^{k_{1}} dt \int_{0}^{t} \tilde{M}_{1}(t, z) dz}
$$
(3.10)

Based on (1.11), it follows that the resolvent-kernel is also positive, i.e. $\overline{M}_1(x,t)$ > 0*,* $∀ x,t ∈ [0,k₁].$ Hence, the denominator of formula

(3.10) for any $0 \le x \le k_1, 0 \le t \le k_1$ does not vanish, that is

$$
k_1 + \int_0^{k_1} dt \int_0^t \tilde{M}_1(t, z) dz > 0.
$$

Solving the problems (3.3) and (3.4), we represent in the form

$$
\tau_1(x) = c_0(e^x - e^{k_1}) - \frac{2}{1 - \mu_1} \left[\int_{k_1}^x e^{x - t} \delta'_1(t) dt - \delta_1(x) + \delta_1(k_1) \right], (x, 0) \in \bar{J}_2
$$
\n(3.11),

where

$$
c_0 = \frac{\frac{2}{1-\mu_1} \left[\int\limits_{k_1}^1 e^{1-t} \delta'_{1}(t) dt - \delta_{1}(1) + \delta_{1}(k_1) \right] + \varphi_1(0)}{e - e^{k_1}}.
$$

By virtue (1.12) , from (3.11) we conclude that

$$
\tau_1(x) \in C^1(\bar{J}_2) \setminus C^2(J_2). \tag{3.12}
$$

Supplying (3.8) and (3.11) into (2.9) and (2.10) respectively, considering (1.12) ,

(1.13), (3.9), (3.12) we define the function $v_1(x)$ from the class

 $\nu_1(x) \in C(\bar{J}_1) \cap C^1(J_1)$ and $\nu_1(x) \in C(\bar{J}_2) \cap C^1(J_2)$ (3.13)

Eliminating $v_2(y)$ and considering (4), (1.11), (2.6), from (2.12), (2.21) and

(2.13), (2.21) respectively, we obtain the integral equation with respect to $\tau_2(y)$.

$$
\tau_2'(y) + \int_0^y K_2(y, \eta) \tau_2'(\eta) d\eta = F_2(y), (0, y) \in I_1
$$
\n(3.14)

and

$$
\tau_2'(y) + \int_0^y K_3(y,\eta)\tau_2'(\eta) d\eta = F_3(y), (0,y) \in I_2
$$
\n(3.15)

where

$$
K_2(y,t) = \frac{d'_{2}(y)}{d_2(y)} + \frac{1 + K_1(y,t)}{d_2(y) \cdot \sqrt{\pi(y-t)}}
$$
\n(3.16)

(3.17)
$$
K_3(y,t) = (1 + K_1(y,t))/\sqrt{\pi(y-t)}
$$
,
\n
$$
F_2(y) = [2c^0{}_2(y) - F_1 \qquad (3.18)
$$
\n
$$
(y,\phi^0{}_1,\tau_1)/d_2(y)
$$
\n
$$
F_3(y) = 2\delta^0{}_2(y)/(1-\mu_2) + F_1
$$
\n
$$
(y,\phi^0{}_1,\tau_1).
$$
\n(3.19)

Based on^{$\lim_{z\to 0} z^{-\sigma}e^{-1/z} = 0$ for any fixed $\sigma > 0$, considering (1.11),} (1.12), (1.13), (3.9), (3.12) we conclude that

1) $K_2(y,t)$ is continuously in $\{(y,t): 0 \le t < y \le k_2\}$ and with $y \to t$ admits an estimate

$$
|K_2(y,t)| \le \text{const}(y-t)^{-\frac{1}{2}};\tag{3.20}
$$

2) $K_3(y,t)$ is continuously in $\{(y,t): k_2 \le t \le y \le h\}$ and with $y \to t$ admits an estimate

$$
|K_3(y,t)| \le \text{const}(y-t)^{-\frac{1}{2}}, \tag{3.21}
$$

3)

$$
F_2(y) \in C[0,k_2] \cap C^2(0,k_2) \text{ and } F_3(y) \in C[k_2,h] \cap C^2(k_2,h). \tag{3.22}
$$

Thus, taking (3.20), (3.21) and (3.22) into account, equation (3.14) and (3.15) are Volterra type integral equations of the second kind with a weak singularity.

According to the theory of Volterra type integral equations of the second kind [10], we conclude that the integral equations (3.14) and (3.15) are uniquely solvable in the class *C* [0,*k*₂]∩*C*² (0,*k*₂) and *C* [*k*₂,*h*]∩*C*² (*k*₂,*h*), respectively, and their solution is given by

$$
\tau'_{2}(y) = F_{2}(y) - \int_{0}^{y} \tilde{K}_{2}(y, t) F_{2}(t) dt, (0, y) \in \bar{I}_{1}
$$
\n(3.23)

and

$$
\tau'_{2}(y) = F_{3}(y) - \int_{0}^{y} \tilde{K}_{3}(y, t) F_{2}(t) dt, (0, y) \in \bar{I}_{2},
$$
\n(3.24)

where $\hat{K}_j(y,t)$ resolvent- kernel of $K_j(y,t)$ (*j* = 2,3).

Using by $\tau_2(0) = 0$, $\tau_2(k_2) = 0$ from (3.23) and (3.24) we find the function $\tau_2(y)$:

$$
\tau_2(y) = \int_0^y \left\{ F_2(t) - \int_0^t \tilde{K}_2(t, z) F_2(z) dz \right\} dt, (0, y) \in \bar{I}_1 \tag{3.25}
$$

and

$$
\tau_2(y) = \int_{k_2}^{y} \left\{ F_3(t) - \int_0^t \tilde{K}_3(t, z) F_3(z) dz \right\} dt, (0, y) \in \bar{I}_2
$$
\n(3.26)

and it belongs to the class

 $\tau_2(y) \in C^1[0,k_2] \cap C^2(0,k_2)$ *and* $\tau_2(y) \in C^1[k_2,h] \cap C^2(k_2,h)$. (3.27)

Substituting (3.27) into (2.12) and (2.13) owing to (4), (1.12), (1.13), (2.2), (3.25),

(3.26) we define that the function $v_2(y)$ from the class

*v*₂(*y*) ∈ *C* [0*, k*₁]^{*\C*¹(0*, k*₁) *and v*₂(*y*) ∈ *C* [*k*₂*,h*] ∩ *C*¹(*k*₂*,h*)*.* (3.28)}

Thus, the solution of the BS-problem can be restored in domain D_1 as a solution of the first boundary-value problem for equation (1.1) (see (2.15)),

and in domains D_i ($j = 2,3$) as a solution of the Cauchy problem for equation (1.1).

Thus, the BS-problem is uniquely solvable.

The theorem is proved. References

1. Tricomi F. On linear partial differential equations of the second order of the mixed type M.-L .: State. those. Published 1947. 192 p.

2. Bitsadze A.V. To the theory of nonlocal boundary value problems. // "Dokladi AN USSR". 1984. V.227. No. 1. P.17.

3. KDzhuraev T.D., Sopuyev A., Mamajonov. M. Boundary value problems for equations of parabolic-hyperbolic type. T .: "Fan". 1986. 220 p.

4. Zolina L.A. On the boundary-value problem for the model equation of hyperbolicparabolic type. // "ZhVM and MF". 1966. Vol. 6. No. 6. P. 991-1001.

5. Bzhihatlov Kh.G., Nakhushev A.M. On a boundary-value problem for equation mixed parabolic-hyperbolic type. // "Dokladi AN USSR". 1968. T. 183. N 2. P. 261- 264.

6. Tikhinov A.N. Samarsky A.A. Equations of mathematical physics. M .: The science. 1977. 736 p.

7. Egamberdiev U. On some boundary value problems for a mixed parabolichyperbolic equation with two lines of type change. // In the book: "Boundary-value problems in the mechanics of continuous media". T: Fan. 1982. P. 117-128.

8. Dzhuraev T.D. Boundary value problems for mixed and mixedcompound equations. Publishing house. FAN. 1979. -240 p.

9. Polzhiy G.N. Equations of mathematical physics. M .: High School. 1964. 560 p.

10. Mikhlin S.G. Lectures on linear integral equations. M .:Fizmatgiz. 1959. 232 p.